Organophosphate-Induced Changes in the PKA Regulatory Function of Swiss Cheese/NTE Lead to Behavioral Deficits and Neurodegeneration
نویسندگان
چکیده
Organophosphate-induced delayed neuropathy (OPIDN) is a Wallerian-type axonopathy that occurs weeks after exposure to certain organophosphates (OPs). OPs have been shown to bind to Neuropathy Target Esterase (NTE), thereby inhibiting its enzymatic activity. However, only OPs that also induce the so-called aging reaction cause OPIDN. This reaction results in the release and possible transfer of a side group from the bound OP to NTE and it has been suggested that this induces an unknown toxic function of NTE. To further investigate the mechanisms of aging OPs, we used Drosophila, which expresses a functionally conserved orthologue of NTE named Swiss Cheese (SWS). Treating flies with the organophosporous compound tri-ortho-cresyl phosphate (TOCP) resulted in behavioral deficits and neurodegeneration two weeks after exposure, symptoms similar to the delayed effects observed in other models. In addition, we found that primary neurons showed signs of axonal degeneration within an hour after treatment. Surprisingly, increasing the levels of SWS, and thereby its enzymatic activity after exposure, did not ameliorate these phenotypes. In contrast, reducing SWS levels protected from TOCP-induced degeneration and behavioral deficits but did not affect the axonopathy observed in cell culture. Besides its enzymatic activity as a phospholipase, SWS also acts as regulatory PKA subunit, binding and inhibiting the C3 catalytic subunit. Measuring PKA activity in TOCP treated flies revealed a significant decrease that was also confirmed in treated rat hippocampal neurons. Flies expressing additional PKA-C3 were protected from the behavioral and degenerative phenotypes caused by TOCP exposure whereas primary neurons were not. In addition, knocking-down PKA-C3 caused similar behavioral and degenerative phenotypes as TOCP treatment. We therefore propose a model in which OP-modified SWS cannot release PKA-C3 and that the resulting loss of PKA-C3 activity plays a crucial role in developing the delayed symptoms of OPIDN but not in the acute toxicity.
منابع مشابه
Swiss Cheese, a protein involved in progressive neurodegeneration, acts as a noncanonical regulatory subunit for PKA-C3.
The Drosophila Swiss Cheese (SWS) protein and its vertebrate ortholog Neuropathy Target Esterase (NTE) are required for neuronal survival and glial integrity. In humans, NTE is the target of organophosphorous compounds which cause a paralyzing axonal degeneration and recently mutations in NTE have been shown to cause a Hereditary Spastic Paraplegia called NTE-related Motor-Neuron Disorder. SWS ...
متن کاملDelayed Induction of Human NTE (PNPLA6) Rescues Neurodegeneration and Mobility Defects of Drosophila swiss cheese (sws) Mutants
Human PNPLA6 gene encodes Neuropathy Target Esterase protein (NTE). PNPLA6 gene mutations cause hereditary spastic paraplegia (SPG39 HSP), Gordon-Holmes syndrome, Boucher-Neuhäuser syndromes, Laurence-Moon syndrome, and Oliver-McFarlane syndrome. Mutations in the Drosophila NTE homolog swiss cheese (sws) cause early-onset, progressive behavioral defects and neurodegeneration characterized by va...
متن کاملCloning and expression of the murine sws/NTE gene
The Drosophila neurodegeneration gene swiss-cheese encodes a neuronal protein apparently involved in glia-neuron interaction and is homologous to human NTE, the molecular target of organophosphate-induced neuropathy. The isolated Msws/NTE gene is 96% identical to NTE. During development the Msws transcript is expressed in the embryonic respiratory system, different epithelial structures and str...
متن کاملLoss of Swiss cheese/neuropathy target esterase activity causes disruption of phosphatidylcholine homeostasis and neuronal and glial death in adult Drosophila.
The Drosophila Swiss cheese (sws) mutant is characterized by progressive degeneration of the adult nervous system, glial hyperwrapping, and neuronal apoptosis. The Swiss cheese protein (SWS) shares 39% sequence identity with human neuropathy target esterase (NTE), and a brain-specific deletion of SWS/NTE in mice causes a similar pattern of progressive neuronal degeneration. NTE reacts with orga...
متن کاملGlial expression of Swiss cheese (SWS), the Drosophila orthologue of neuropathy target esterase (NTE), is required for neuronal ensheathment and function
Mutations in Drosophila Swiss cheese (SWS) or its vertebrate orthologue neuropathy target esterase (NTE), respectively, cause progressive neuronal degeneration in Drosophila and mice and a complex syndrome in humans that includes mental retardation, spastic paraplegia and blindness. SWS and NTE are widely expressed in neurons but can also be found in glia; however, their function in glia has, u...
متن کامل